Isolation and characterization of plant N-acetyl glucosaminyltransferase I (GntI) cDNA sequences. Functional analyses in the Arabidopsis cgl mutant and in antisense plants.

نویسندگان

  • I Wenderoth
  • A von Schaewen
چکیده

We report on the isolation and characterization of full-length cDNA sequences coding for N-acetylglucosaminyltransferase I (GnTI) from potato (Solanum tuberosum L.), tobacco (Nicotiana tabacum L.), and Arabidopsis. The deduced polypeptide sequences show highest homology among the solanaceous species (93% identity between potato and tobacco compared with about 75% with Arabidopsis) but share only weak homology with human GnTI (35% identity). In contrast to the corresponding enzymes from animals, all plant GnTI sequences identified are characterized by a much shorter hydrophobic membrane anchor and contain one putative N-glycosylation site that is conserved in potato and tobacco, but differs in Arabidopsis. Southern-blot analyses revealed that GntI behaves as a single-copy gene. Northern-blot analyses showed that GntI-mRNA expression is largely constitutive. Arabidopsis cgl mutants deficient in GnTI activity also possess GntI mRNA, indicating that they result from point mutations. GntI-expression constructs were tested for the ability to relieve the GnTI block in protoplasts of the Arabidopsis cgl mutant and used to obtain transgenic potato and tobacco plants that display a substantial reduction of complex glycan patterns. The latter observation indicates that production of heterologous glycoproteins with little or no antigenic glycans can be achieved in whole plants, and not in just Arabidopsis, using antisense technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans.

GnTI (N-acetylglucosaminyltransferase I) is a Golgi-resident enzyme essential for the processing of high-mannose to hybrid and complex N-glycans. The Arabidopsis thaliana cgl mutant lacks GnTI activity and as a consequence accumulates oligomannosidic structures. Molecular cloning of cgl GnTI cDNA revealed a point mutation, which causes a critical amino acid substitution (Asp144-->Asn), thereby ...

متن کامل

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

Identification and Functional Characterization of Arabidopsis icl Mutant Under Trehalose Feeding in Light and Dark Conditions

Trehalose is a non-reducing sugar that plays an important role in plant growth and development. To study the role of trehalose on lipid metabolism and gluconeogenesis, Arabidopsis thaliana wild type (WT) and TreF (a line expressing trehalase) were grown on ½ MS medium with or without 100 mM sucrose and or trehalose in light or continuous darkness. In dark, trehalose leads skotomorphoge...

متن کامل

Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis

There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...

متن کامل

Identification and Characterization of LHCB1 Co-Suppressed Line in Arabidopsis

To explore the function of light-harvesting complex protein (LHCP) in Arabidopsis growth and development, the Leclere and Bartel seed collection was screened. In this collection randomly cloned cDNAs are expressed under the CaMV35S promoter. A pale green line has been identified and characterized in more details. Analysis of the inserted cDNA in the pale green line showed it encodes LHCB1 prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 123 3  شماره 

صفحات  -

تاریخ انتشار 2000